On bandwidth parameter choices for discrete nonparametric kernel estimator

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust nonparametric kernel regression estimator

In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.

متن کامل

Bandwidth selection for nonparametric kernel testing

We propose a sound approach to bandwidth selection in nonparametric kernel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution of the test concerned. Due to the involvement of a kernel bandwidth in the leading term of the Edgeworth expansion, we are able to establish closed–form expressions to explicitly represent the leading terms of both the size and power ...

متن کامل

Bandwidth Selection in Nonparametric Kernel Testing

We propose a sound approach to bandwidth selection in nonparametric kernel testing. The main idea is to find an Edgeworth expansion of the asymptotic distribution of the test concerned. Due to the involvement of a kernel bandwidth in the leading term of the Edgeworth expansion, we are able to establish closed-form expressions to explicitly represent the leading terms of both the size and power ...

متن کامل

Nonparametric Beta Kernel Estimator for Long Memory Time Series

The paper introduces a new nonparametric estimator of the spectral density that is given in smoothing the periodogram by the probability density of Beta random variable (Beta kernel). The estimator is proved to be bounded for short memory data, and diverges at the origin for long memory data. The convergence in probability of the relative error and Monte Carlo simulations suggest that the estim...

متن کامل

A kernel type nonparametric density estimator for decompounding

Given a sample from a discretely observed compound Poisson process we consider estimation of the density of the jump sizes. We propose a kernel type nonparametric density estimator and study its asymptotic properties. Asymptotic expansions of the bias and variance of the estimator are given and pointwise weak consistency and asymptotic normality are established. We also derive the minimax conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2016

ISSN: 1631-073X

DOI: 10.1016/j.crma.2016.02.012